Temperature Study during the Edge Trimming of Carbon Fiber-Reinforced Plastic [0]8/Ti6Al4V Stack Material

نویسندگان

چکیده

Carbon Fiber-Reinforced Plastic (CFRP) and Titanium alloy (Ti6Al4V) stacks are used extensively in the modern aerospace industry thanks to their outstanding mechanical properties resistance thermal load applications. Machining CFRP/Ti6Al4V stack is a challenge complicated by differences each constituent materials’ machinability. The difficulty arises from matrix degradation of CFRP material caused heat generated during machining process, which consequence low conductivity Ti6Al4V material. In most cases, materials stacked secured together using rivets or bolts. This results extra weight, while drilling process required for such an assembly may damage To overcome these issues, some applications employ that free bolts rivets, uses adhesives adapted curing bond both together. present research analyzes distribution its effect on quality edge trimming assembly. Different types tools cutting parameters compared thermocouples embedded within others tool edge. contrast previous studies, feed rate was significant factor affecting temperature workpiece, speed had no impact. workpiece increases as per tooth decreases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Temperature and Moisture on the Compressive Strength of Carbon Fiber Reinforced Polymers

The effect of moisture absorption and high temperature on the compressive strength of unidirectional IM7/977-2 carbon/epoxy resins have been investigated experimentally. The specimens were divided into 4 groups, and tested under 4 different conditions by varying the testing temperature and moisture parameters. The fiber orientation selected were 0o, ±45o and 90o...

متن کامل

Effect of surface treatments on damping behavior of carbon and glass fiber reinforced friction material

The ability to absorb vibrations in a vehicle during braking conditions depends primarily on the selection of ingredients for a friction material and interfacial adhesion between all these ingredients.  In this work, a hybrid brake friction material is developed by combination of carbon fiber (CF), glass fiber (GF), resin and other ingredients. The surfaces of carbon and glass fibers are c...

متن کامل

Dynamic Characteristics of Joined Steel and Carbon Fiber-Reinforced Plastic Tubes: Experimental and Numerical Investigation

The fundamental frequencies and mode shapes of steel and carbon fiber–reinforced plastic (CFRP) cylindrical shells with steel inserts were investigated using finite element analysis and modal testing. The free-free boundary condition was tested with modal testing using the roving hammer method and verified by finite element analysis using ABAQUS. The results show good agreement between the test...

متن کامل

Fiber reinforced plastic composites using recycled materials

This work investigates the feasibility of using recycled high density polyethylene (rHDPE), recycled polypropylene (rPP) and old newsprint fiber (ONP) to manufacture fiber reinforced composites. The boards were made through air-forming and hot press. The effects of the fiber loading and coupling agent content on tensile, flexural, internal bond properties and water absorption and thickness swel...

متن کامل

Carbon Fiber Reinforced Bismaleimide Composites

Bismaleimide (BMI) resins are developed very rapidly due to the demands of the defense and aerospace industries. They are cross-linked polymers which process like epoxy resins but have an upper use temperature of 230°C, compared to the epoxy upper use temperature of 175°C. Also due to the available intrinsic properties of BMI resins such as higher thermal stability and lower toxicity than those...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of composites science

سال: 2021

ISSN: ['2504-477X']

DOI: https://doi.org/10.3390/jcs5050137